Few-Layer Graphene Sheet-Passivated Porous Silicon Toward Excellent Electrochemical Double-Layer Supercapacitor Electrode
نویسندگان
چکیده
منابع مشابه
Weak localization in electric-double-layer gated few-layer graphene
We induce surface carrier densities up to ∼ ⋅ 7 1014 cm−2 in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4and 5-layer graphene below 20–30 K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab initio calculations we de...
متن کاملFew-layer graphene obtained by electrochemical exfoliation of graphite cathode
Few-layer graphene has been prepared by electrochemical intercalation of graphite cathode using Na/ dimethyl sulfoxide complexes as intercalation agent. By adding thionin acetate salt into the electrolyte, the exfoliated graphite is stabilized and further exfoliated into few-layer graphene. Raman and X-ray photoelectron spectra indicate that the graphene material has lower content of defects an...
متن کاملEnhancement of electron-hole superfluidity in double few-layer graphene
We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets...
متن کاملElectric double-layer capacitance between an ionic liquid and few-layer graphene
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is p...
متن کاملCrystallographic etching of few-layer graphene.
We demonstrate a method by which few-layer graphene samples can be etched along crystallographic axes by thermally activated metallic nanoparticles. The technique results in long (>1 microm) crystallographic edges etched through to the insulating substrate, making the process potentially useful for atomically precise graphene device fabrication. This advance could enable atomically precise cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Research Letters
سال: 2018
ISSN: 1931-7573,1556-276X
DOI: 10.1186/s11671-018-2646-7